
Computers & Security, 14 (1995) 541-566

0167-4048(95)00012-7

MCF: a
malicious code
filter*
Raymond W. Lo’, Karl N. Levitt
and Ronald A. Olsson
Department of Computer Science, University of Calijhia, Davis.
CA 95616-8562, USA

The goal of this research is to develop a method to detect

malicious code (e.g. computer viruses, worms, Trojan horses,

and time/logic bombs) and security-related vulnerabilities in

system programs. The Malicious Code Filter (MCF) is a pro-

grammable static analysis tool developed for this purpose. It

allows the examination of a program before installation,

thereby avoiding damage a malicious program might inflict.

This paper summarizes our work over the last few years that

led us to develop MCF.

l We investigated and classified malicious code. Based on this

analysis, we developed a novel approach to distinguish

malicious code from benign programs. Our approach is

based on the use of tell-tale signs. A tell-tale sign is a pro-

gram property that allows us to determine whether or not

a program is malicious without requiring a programmer to

provide a formal specification.

l We generalized program slicing to reason about tell-tale

malicious properties. Program slicing produces a bona-fide
program-a subset of the original program behaving exactly

the same with respect to the realization of a specified prop-

erty. By combining the tell-tale sign approach with pro-

gram slicing, we can examine a small subset of a large

program to conclude whether or not the program is

malicious.

*This work is supported by the United States Department of

Defense, Lawrence Livermore National Laboratory, and
Deloitte Touche.

‘Current address: Raymond W. Lo, Silicon Graphics Inc.,

2011 N. Shoreline Blvd, PO Box 7311, M/S lOU-178,
Mountain View, CA 94039-7311, USA.

We demonstrated the capabilities of the tell-tale sign

approach and program slicing to detect some common

UNIX vulnerabilities.

We determined how our basic approach could be defeated

and developed a countermeasure-the well-behavedness check.
Static analysis produces inaccurate slices on a program that

has pointer overflows, out-of-bounds array accesses, or self-

modifying code. The well-behavedness check applies flow

analysis (integer-range analysis) and verification techniques

(loop invariant generation, verification condition genera-

tion, and theorem proving) to identify such problematic

cases.

Keywords: Malicious code, Malicious code detection, Static

analysis tool, Program slicing.

1. Introduction

M alicious programs can cause loss of confi-

dentiality and integrity, or cause denial of
resources. Common classes of malicious programs
include computer viruses [11, computer worms
[2], Trojan horses, and programs that exploit
security holes, covert channels, and administrative
flaws to achieve malicious purposes.

Some program properties allow us to discern
malicious programs from benign programs easily,
with very high accuracy, without the need to give

0167-4048/95/$9.50 0 1995, Elsevier Science Ltd 541

R. W. Lo et al./A malicious code filter

a specification of the program. We call these prop-
erties tell-tale signs. The idea is to program a filter
to identify these tell-tale signs. Nevertheless, the
filter may mistakenly identify some normal pro-
grams as malicious (false positives). The goal is to
minimize such mistakes.

For example, we can use tell-tale signs to identify
computer viruses. Consider a hypothetical virus W
that infects writable and executable programs. W
infects a program if the file has enough empty
space at the end of the program by (1) copying its
viral code to the end of the text segment; (2)
modifying the entry point of the victim program
to viral code; and (3) registering the original entry
point so that control is passed back to the original
program when the virus finishes executing. We
may identify a program infected by the following
tell-tale signs.

l Duplicated system calls. The original program has
one open0 system call. Since the viral code
carried its own open0 system call, the infected
program has two open0 system calls.

l Isolated/Independent code. A viral code is typically
self-contained and independent of the infected
program. No shared (global) variables or para-
meters are passed between the viral procedure
and other program procedures.

l Access of text segment as data. When the virus cop-
ies itself to other programs, it reads the viral
code from its own text segment. Reading the
text segment is a rare activity in normal
programs.

l Anomalous jle accesses. The virus opens and
writes to executable files, normally only done
by compilers and linkers.

These tell-tale signs do not identify only the W
virus, but also others. For example, we can detect
the RUSH HOUR virus [3], which was devel-
oped and published for virus demonstration, using
the fourth tell-tale sign. The RUSH HOUR virus

is intended to harmlessly show the danger of viru-
ses to computer systems. The virus only lodges
itself in the MS-DOS German keyboard driver
KEYBGR.COM. When the virus is in the system,
it searches the current directory for the keyboard
driver every time the user accesses the disk. The
virus, which camouflages itself as a keyboard
driver, intercepts all MS-DOS system calls. The
infecting action is triggered by the load-and-exe-
cute system call. After being triggered, the virus
tests the KEYBGR.COM on the specified drive
and infects it, if it has not already been infected.
We use our tool to look for file access system calls
in MS-DOS system files and device drivers,
which should not have any.

As another example, a time bomb can be easily
detected using the tell-tale sign approach. A time
bomb contains malicious code that is triggered at a
certain time. A generic time bomb, as shown in
Fig. 1, first reads the current time, and then com-
pares it with a triggering condition. If the trigger-
ing condition is satisfied, the time bomb performs
the damage. The security analyst can program
MCF to recognize such an execution pattern (the
time-dependent execution of certain statements)
that is rather suspicious.’

The tell-tale sign approach can detect unseen but
similarly structured malicious code. If new mali-
cious code undetectable by existing tell-tale signs
is found, MCF can handle new tell-tale signs for
detecting the new malicious code. Since MCF
uses static analysis to consider all possible execu-
tion paths of a program, it can identify problems
not detected using run-time or dynamic analysis.
By combining the tell-tale sign approach with
program slicing, we can just examine a small por-
tion (i.e. the security-related portion) of a pro-
gram to conclude whether or not the program is
malicious; for programs with hundreds or thou-
sands lines of code, these slices are often just a

‘There are just a few exceptions, e.g. the UNIX make

program, incremental backup procedures, or editors such as

emacs.

542

Computers & Security, Vol. 14, No. 6

time-bomb:

now = geaimeofday0;

if (trigger-time(now))

do-damage;

. . .

Fig. 1. Program skeleton of time bombs.

few lines. Compared with other static analysis
techniques that must examine the whole program,
we believe our approach imposes the minimal
amount of work required by using program slic-
ing. With the use of well-behavedness checks, we
can identify situations in which a static analysis
tool might be fooled by a malicious code. Existing
tools do not identify such cases and thus cannot
provide a level of confidence comparable to our
tool.

Section 2 compares other malicious code detec-
tion approaches with ours. Section 3 contains
more tell-tale signs that can detect other classes of
malicious code and system vulnerabilities. Section
4 gives examples in applying these tell-tale signs.
Section 5 describes applying program slicing to
mechanize the identification of tell-tale signs. Sec-
tion 6 contains the analysis of one user program
and one system program. Section 7 describes how
MCF can be defeated and introduces the well-
behavedness property. Section 8 concludes the
paper. This paper summarizes our approach; com-
plete details appear in [4].

2. Related work

The simplest approach to detect malicious code is
to run the program to see whether it shows any
viral activities. Despite its simplicity, run-time
approaches have several major drawbacks. First,
they expose a system to potential damage by run-
ning a potentially malicious program. Second,
they only detect and then inhibit malicious pro-
grams’ activities, but they cannot identify the pres-
ence of malicious code when the code is dormant.
Third, when a run-time tool identifies a problem,

it either stops the malicious program or asks for
human attention. For systems running without
attention, run-time approaches are simply not
viable.

Static approaches perform the analysis without
executing the program. Therefore, they do not
have the problems associated with run-time
approaches. However, static analysis is harder to
implement. Current static methods are compar-
ison based. They fall into the following three gen-
eral categories according to whether the program
is (1) compared with a ‘clean’ copy of the program
[5], (2) compared with known malicious code
(used by virus scanners), or (3) compared against
a formal specification [61. Unfortunately, a ‘clean’
program is not easily obtained; the most danger-
ous malicious codes are the unknown ones. Also,
the formal specification and verification of pro-
grams is at best difficult. Commonly used pro-
grams often have no specifications and are very
unlikely to be verified.

Dynamic analysis [7] combines the concept of
testing and debugging to detect malicious activities
by running a program in a clean-room environ-
ment. The execution is typically monitored (e.g.
by a programmable debugger [8]) for suspicious
behavior. The analysis is in general more reliable
than run-time approaches because data are gen-
erated systematically to test the program [9]. Test
coverage analysis will also reveal parts of programs
not covered by the analysis. Compared with static
analysis, dynamic analysis is less reliable because
testing can never be exhaustive.

Malicious code can be detected by a human ana-
lyst screening the program. Although a human can
reason about a program in detail, (s)he is weak in
examining code and data that are spatially or tem-
porally separated, and also has difficulties in han-
dling a large amount of information at one time.

A malicious program may exploit the human
weaknesses by obfuscated programming techni-
ques such as using macros, overflowing pointers,

543

R. W. Lo et allA malicious code filter

writing self-modifying programs, or installing sec-
tions of malicious code in spatially separated parts
of the program. Furthermore, a malicious code
may use familiar variable names and procedure

names associated with benign purposes to camou-
flage the malicious code. Finally, humans err.
Thus the result of analysis by humans is not
reliable.

Virus scanners are the only automated tool avail-
able nowadays for malicious code detection. They
detect known viruses by scanning binary programs
for pre-determined machine code sequences. The
idea of scanning known malicious code is not very
useful for detecting general malicious code
because identical time bombs or Trojan horses are
unlikely to be found in different sites. Virus scan-
ners are also not effective against polymorphic

viruses.

3. Tell-tale signs

As mentioned in Section 1, tell-tale signs are

properties of programs that can be used to dis-
criminate between malicious and benign pro-
grams. Tell-tale signs must be simple enough so
that their identification can be mechanized and
must be fundamental enough so that certain mali-
cious action is impossible without showing tell-
tale signs. Most tell-tale signs are related to system
calls because these system calls are the only way of
performing certain functions. The following are
some of the useful tell-tale signs. We use program
slicing to reason about tell-tale signs. The pro-
gram slices with respect to the tell-tale properties
are usually short. Interestingly, many slices corre-
sponding to the tell-tale signs are just empty, and
very often a slice corresponds to more than one
tell-tale sign. The work required by the analyst is,

in fact, much less than it might appear. We believe
that by examining these signs we can identify
most malicious code. For convenience, we group
the tell-tale signs into three groups.

3.1 Tell-tale signs identified by program slicing
These tell-tale signs apply to all kinds of programs

544

and are used with the program slicer.

File read. This includes the slicing for the
open0 system calls. The list of files being read
will show what kind of information the pro-
gram may access (e.g. strange accesses to /dew*
should be detected).

File write. In addition to the open0 system call,
it includes the uses of create(), link(), and
unlink0 system calls because a file modification
can be simulated by deleting and creating a file.
The files written to should be checked against a
list of important system files (e.g. /vmunix, /etc/
passwd, letdaliases, /bin/*, /usrlbinl* files).’

Process creation. A malicious program uses the
fork0 system call to create processes. A denial-
of-service malicious program may put a fork0
system call in a loop to create a large number of
processes.3

Program execution. A malicious program may cre-
ate another process to perform the malicious
action, so we check which other programs are
invoked and examine them. Typical sequences

are a fork0 system call followed by an exec()
system call, and the system0 and popen()
library calls.

Network accesses. Malicious programs can use the
network to send information back to the writer.
We will slice for the network system calls, e.g.
socket(), connect() and send().

Change of protection state. We slice for the change
of protection-states system calls, e.g. chmod()
and chown(). It is rather unusual for normal

‘Symbolic links to these files could exist. We depend on
intrusion-detection systems to notify the system admuustrator
when such links are made.
‘The number of processes created is limited by the maximum
number of processes per user in some UNIX systems.

Computers & Security, Vol. 14, No. 6

programs to use these system calls and this
could indicate the presence of a Trojan horse.

Change ofprivilege. We slice for the setuid() and
setgid() system calls.

Time-dependent computation. We find out how the
time is used in the program. A forward slicing
on the get timeofday() system call shows all
variables that contain time-dependent variables.
We will slice again for the statements depend-
ing on some time-dependent values.

Input-dependent system call. This tell-tale sign
refines the file open tell-tale sign. Some UNIX
applications have data-flow paths from a read0
system call to an open() system call. That
means a user can probably control which files
these applications can modift by supplying cer-
tain inputs.

Race conditions. Race-condition bugs occurred in
some root-privileged UNIX system utilities,
e.g. rdist and fingerd. In both cases, the reques-
ted file/direction accesses are validated before
files are opened. An intruder may relink the
file/directory in the period between the valida-
tion and the actual access. This situation can be
characterized by an access0 system call preced-
ing an open() system call.

3.2 Tell-tale based on data-flow information

These signs include anomalous pointer aliasing,
data dependence, anomalous interprocedural data
dependence. They do not need the program slicer.

l Anomalous data j7ow. This relates to possible
bugs in a program. Some detectable anomalies
including consequent definition of variables
without any usage in a path, use of undefined
variables, and branch testing that depends on a
constant value.

l Anomalous interprocedural data dependence. We
compute the summary data-flow information
for each procedure and create a data-depend-

0

ence graph in which a node represents a proce-
dure and an edge represents dataflow. Malicious
code (e.g. viruses) that does not use any value
computed in the original program will show up
as a disconnected component in the summa-
rized data-dependence graph.

Well-behavedness. Bad-behaved programs can
fool static analysis tools. Two checks are
required: (1) that dereferenced pointers contain
valid addresses; and (2) that pointers/arrays do
not overflow. We also look for uses of the
gets0 library call that do not limit the size of
the input string, such as the well-known finger
daemon bug (see Section 4.2.1). Details are in
Section 7.

3.3 Program-specific tell-tale signs

The above tell-tale signs apply without our need-
ing to know what the program does. If we can
determine the function of the program, more
analysis can be done. The tell-tale signs in this
section include properties of system programs we
should examine. These properties are complicated
and typically require significant human analysis,
but with the use of program slicing the effort is
drastically reduced. Furthermore, the security ana-
lyst can examine additional properties pertinent to
certain classes of programs.

Authentication. We want to find out how authen-
tication is performed. We slice for the condi-
tions that are true for the authentication to be
granted.

Ident$ation of changes. This detects what infor-
mation is changed. For example, the telnet pro-
gram should pass information back and forth
without modification. The chfn (change finger
name) program should only modify the data-
base information field of the password entry.
We can slice the program between the corre-
sponding read() and write() system calls for the
modification of the values.

Internal state of authentication loop. An authentica-
tion loop should be stateless. Its outome should

545

R. W. Lo et al./A malicious code filter

only depend on the userid, the password, and
the password file; it should not depend on any
global or static variables. The state of a loop can
be derived easily using the data-flow informa-
tion. This tell-tale sign has been used to iden-
tify a bug in ftp that caused a security problem.

4. Detecting malicious code and common
vulnerabilities

4.1 Detection of malicious code

The following malicous codes are described
according to the six steps of the malicious code
model mentioned in Appendix B. The six steps
are: (1) gain access to the system; (2) obtain privi-
lege; (3) wait for triggering conditions; (4) per-
form malicious action; (5) clean up; and (6) repeat
steps 1 through 5.

We have included a Trojan login program and
multistage malicious code here. More examples
including a salami attack program, a sniffer, a fer-
ret program, and a program that overloads a
system can be found in [4]. Although these pro-
grams are not malicious code, they are based on
realistic examples and are used to illustrate how
tell-tale signs are useful towards detecting real
malicious code.

4.1.1 Trojan login
The Trojan login program is usually advertised as
some enhancement to the existing login program
(e.g. to use shadow passwords) and works as
follows:

(1) It is copied to the system by the administrator.

(2) It is installed in the /bin directory as a root-
setuid program.

(3) An outsider enters the system using a bogus
userid, for which a password is not required
by the Trojan login program.

(4) A root-privileged shell is created for that par-
ticular login.

546

(5) The login program does not write the bogus
login to the log file, so the bogus login will
not show up with system-administration pro-
grams (although it could show up in a com-
mand-log file).

The Trojan horse code is detectable with the
‘Authentication’ tell-tale sign. There is a path
starting from the entry point to the privilege-
granting part without password checking. The
analyst will need to locate the privilege-granting
setuid() system call and then slice for the authen-
tication code. With the Trojan horse, the analyst
should identify a path to the setuid() system call
that does not pass through the password-compar-
ison code.

4.1.2 Multistage launcher

This mechanism carried a malicious program into
a specified location (system). The mechanism is
similar to that used by viruses to replicate, but the
malicious program replicates in a controlled way
and has a target. The program has no specific
malicious action except propagating to more
secure systems. The triggering and the action of
the malicious code is programmable. For example,
it can be programmed to deliver other malicious
code (such as the malicious code described in the
next section) into a development system as
follows:

(1)

(2)

(3)

(4)

The multistage malicious program is installed
as a Trojan ‘1s’ program in the /tmp directory
by an insider.

Users working in the /tmp directory may exe-
cute the Trojan ‘1s’ program accidentally.

After invocation, the malicious program deter-
mines whether it should migrate to a remote
system accessible by the current victim (i.e.
whether the remote system is closer to the
target machine).

If the malicious program migrates, it copies
itself to the file /tmp/ls on the remote
machine.

Computers & Security, Vol. 14, No. 6

(5) The program avoids detection by maintaining
one copy of itself all the time.

(6) The program repeats steps 1 through 5 until
the specified machine is reached.

The multistage program executes rep or rsh to
transfer itself from one machine to another. The
execution of rep or rsh is discovered by the ‘Pro-
gram Execution’ sign.

4.1.3 Development system attack

This attack is aimed at embedded systems. The
malicious program in this attack has two stages.
The first stage gets into the development system
and installs the second stage in the weapon
system. The second-stage malicious code creates a
blind spot in the firing-control component in an
embedded weapon system. An example of such an
attack is as follows:

(1) It uses the multistage launcher to get into a
development system.

(2) It is executed by a system administrator.

(3) The action is triggered when the program has
the privilege to modify the library file (e.g. the
C library /usr/lib/libc.a in UNIX).

(4 It changes the sin0 function in the library, so
that sin(x) = sin(45) when 44<x<45. The
effect is that the firing system (the gun activa-
tor) can never aim at an angle between 44 and
45, thus it provides the enemy with a safe
direction of attack.

(5) The program eliminates itself once the library
is modified.

The development-system attack program is carried
by the multistage launcher. Since this program
damages a system by modifying its functionality
slightly, there is no effective way to identify it
(because there are so many ways to change func-
tionality and there are so many functionalities in a

system). However, it is still detectable because we
can detect the launching section as mentioned
above and the modification of the library with the
‘File Write’ sign.

4.2 UNIX vulnerabilities and their detection
In this section, we examine how the tell-tale sign
approach is useful for identifying some known
system vulnerabilities. More examples including
the rdist bug and the sendmail bug can be found
in [4].

4.2.1 Finger daemon (fingerd)

The finger daemon (fingerd) has a bug that allows
an intruder to read protected files without proper
privilege. fingerd, running as root, prints the con-
tent of the .plan file of the person being fingered.
Therefore, an intruder can symbolically-link his
.plan file with a protected file and then run finger,
which invokes fingerd, to print out the content of
the protected file. This bug was fured by first
checking that .plan is not a symbolic link before
opening the file. However, this fix can be circum-
vented if the intruder links the .plan file during
the period after the check has finished and before
the open0 system call executes. This race condi-
tion is detectable by the ‘Race Condition’ sign.

4.2.2 Mail notifier (cornsat)

The utmp file records information about who is
currently using the system. Whenever a user logs
in, login fills in the entry in /etc/utmp for the
terminal on which the user logged in. /etc/utmp is
owned by root but is world writable. Anyone who
has an account on the system may modify letd
utmp. If the system enables tftp, /etJutmp can be
modified from other systems.

The mail notifier (comsat) is the server process
that waits for reports of incoming mail and noti-
fies users who have requested to be told when
mail arrives. comsat listens on a datagram port
associated with the biff service specification (see
services in Section 5 of Unix man pages) for one-
line messages of the form user@mailbox-offset. If
the user specified is logged onto the system and

547

R. W. Lo et aLlA malicious code filter

biff services have been turned on, the first part (10
lines) of the mail is printed on the user’s terminal.
Comsat reads the file /etc/utmp to determine the
appropriate terminal to which to write the mail
message. Furthermore, comsat is run as root.

An intruder can modify the terminal field in his
letdutmp entry to /tmp/x and link it to a system
file, e.g. /etc/passwd. Then he can turn on the
mail-notification service and send himself mail.
Comsat will write the first few lines of the mail
message to the target file. If the target file is the

password file, the hacker can supply a bogus pass-
word entry in the mail he sent himself

The comsat problem is revealed by the ‘File Read’
sign, which indicates that the file written to comes

from the /etc/utmp directly. Further analysis on
the access of /etc/utmp shows that its content is
not validated.

5. Mechanizing malicious code detection

Program slicing [lo] produces a bona-fide pro-
gram-a subset of the original program that
behaves exactly the same with respect to the com-
putation of a designated property. The concept of
breaking down a large program into smaller mod-
ules for analysis dates back to 1975 [111. Zislis
uses busy variables (variables that will be used
later in the program) as the criteria to group
related program statements together and form a
slice. Weiser [lo] uses a more accurate criteria-
data dependence-to group statements together.
These criteria are not the only ways of grouping
relevant and eliminating irrelevant statements. In
this section, we discuss several ways of applying
the control-dependence and data-dependence ana-
lyses to ‘slice’ a program-namely, backward data-
flow slicing (Weiser-style slicing), forward

data-flow slicing, predicate-region slicing, and
control-flow slicing. These ways are used to iden-
tify different tell-tale signs but they employ the
same platform for analysis.

5.1 Program representation
The program being analyzed is translated into an

548

intermediate form. We represent the intermediate
form with a program graph. For convenience of
analysis, we impose the following restrictions
(some achieved through program transformation)
on the intermediate form:

a branch node is split into a true-branch and a
false-branch node to distinguish their
influences;

expressions have no side effects, but procedures
can;

at most, one procedure call is allowed in each
computation node;

at most, one variable is modified in each com-
putation node;

the data-flow definitions of all system and
library calls are pre-determined;

all storage locations are identified and given a
name. We call them objects; and

all pointer variables must point to some objects
or have the value NULL.

5.2 Global flow analysis

Most compilers perform only intra-procedural
analysis because of the limited time allowed to be
spent by the optimizer. It is safe to make certain
assumptions, e.g. that local variables are not mod-
ified by other procedures. In security analysis, the
analysis must be global, inter-procedural and must
have the assumptions validated. Malicious code
writers will not conform to rules of good pro-

gramming practice to make our lives easier; e.g. a
procedure in a malicious program may interfere
with other procedures through legitimate (alias-

ing) and non-legitimate means (pointer
overflows).

We perform a global point mapping analysis to
determine the effect of pointer aliasing on the data
dependence by keeping track of the values of each

Computers & Security, Vol. 74, No. 6

pointer variable. Then we compute the data and

control dependence for the entire intermediate
program. We provide the following functions after
completing flow analysis.

v-in a program and determines the nodes in any
path going from u to V. The slicing is produced by
the following equation:

control-sfice(u, v) = focus n succ(u) n pred(v).
l pred(u) returns the set of nodes that can reach u.

l succ(u) returns the set of nodes that u reaches.

l forward-depend(u) returns the set of nodes in
which the computation uses the value of a vari-
able modified in u.

l backward-depend(u) returns the set of nodes that
modifies a variable used in u.

l predicate-depend(u) returns the branch nodes that
decide whether or not u executes.

l predicate-region(b) returns the set of nodes that is
executed if the branch node b is taken.

5.3 Program slicing

We perform slicing on a per node basis. A pro-
gram slice is represented by a set of nodes. Given
the set of nodes and the original intermediate pro-

gram, a subset program can be reconstructed eas-
ily. Since a program slice is represented by a set, it
is possible to combine the effect of different slic-
ing methods by set-union, set-intersection, or re-
slicing using different criteria. In the following
discussion, focus is used to combine different slic-
ing methods. Notice that focus initially contains
the whole program.

Control-flow slicing is extremely simple. Since
there is no reason to look at complete execution
paths all the time, we can eliminate those sections
in which we are not interested. For example,
when slicing for the file accesses call, we are inter-
ested in sections of paths starting at the entry
point and ending at an open0 system call. For
programs including authentications, we may only
be interested in the authentication section.

The control-flow slicer accepts two points-u and

Weiser [lo] uses backward data-flow slicing.
Informally, it determines which statements affect
the variables at the statement under examination.
A statement can affect a subsequent statement
either directly or indirectly. The direr-t effect pro-
vides a value to be used at the later statement. The
indirect effect controls whether the later statement
will be executed. In Fig. 2, statement 3 has a
direct effect on 4 because y:4 (represents the value
of y at line 4) uses the value x:3; statement 2 has
an indirect effect on statements 3, 4, and 6
because it determines which of them are executed.

The slicing algorithm, shown in Fig. 3, is a gen-
eral slicer that can produce a program slice by
collecting direct, indirect, or their combined data-

dependence in a forward or backward manner.
The variable focus carries the part of the program
narrowed down by previous slicings.

Backward data-flow (Weiser’s) slicing determines
the set of statements that affect the variables
directly or indirectly at the statement under exam-
ination. It is defined as follows:

backward-both-slice(node, focus)

= general-slice(node, focus, “backward”, “both”).

Forward data-flow slicing determines the effect of
certain computations in the program. It is very

1 c=l;

2 if(c) I

3 x=10;

4 y = x;

5 }else

6 y=3;

Fig. 2. Direct and indirect data dependence.

549

R. W. Lo et aLlA malicious code filter

general-slice(nodes, focus, direction, dependence)

I
new-list = (nodes) ;
node-list = ();
while (node-list # new-list) (

node-list = new-list;
if direction is forward (

if dependence is “indirect” or “both”
new-list = forward-depend(node-list);

if dependence is “direct” or “both”
new-list = predicate-region(new-list);

) else if direction is backward (
if dependence is “control” or “both”

new-list = backward-depend(node-list);
if dependence is “data” or “both”

new-list = predicate-depend(new-list);

1
new-list = new-lists focus;

1
mum node-list;

1
Fig. 3. General program slicer.

similar to backward data-flow slicing, except that
it traces forwards through data-flow graph and
predicate regions. It is defined as follows:

forward-both-stice(node, focus)

= general-slice(node, focus, “forward”, “both”)

5.3.1 Slicing for’file access

Forward or backward slicing sometimes generates
program slices that have too much detail. With the
file access properties, we are interested in which
files are opened and not interested in under what
situation the files are opened. Therefore, the
nodes included by tracing the indirect effects are
often useless. As the first approximation, we slice
for the direct effects only; that usually produces a
smaller slice that is also simpler to examine. It is
defined as follows:

backward-direct-slice(node, focus)

= general-slice(node, focus, “background”, “direct”).

5.3.2 Slicing for time-dependent computation

The time bomb example in Section 1 requires a
different kind of program slicing, in which the
direct effects are collected first and then indirect
effects are identified. The time bomb slicing algo-
rithm can be built as follows:

timebomb-slice(node, focus) =

gerieral slicee(

general-slice(node, focus, “forward”, “direct”),

f ecus,

“forward”, “indirect”).

5.3.3 Slicing for race conditions

We perform this slicing for pairs of access0
system call and open0 system call. First we apply
control slicing to focus on the program nodes
between the access and open calls. Then we per-
form backward slicing to see whether their argu-
ments have common ancestors. (We should also
check that if both system calls have constant argu-
ments, the constants are different.)

Let anode contain an access0 system call,

Let onode contain an open() system call.

race-cond-slice(anode, onode) =

general-slice(anode, afocus, “backward”, “direct”)

n

general-slice(onode, ofocus, “backward”, “direct”)

where a&us = control-slice(entty, anode)

and ofocus = control-slice(anode, onode) u afocus.

550

Computers & Security, Vol. 74, No. 6

Note that this slicing can discover careless pro-
gramming mistakes but not all intentional mali-
cious code. For example, if the relevant arguments
to the two systems calls are independently
assigned the same value, then their slices may not
overlap.

5.3.4 Slicing for other signs

To identify the slice for the ‘change of protection
state’ sign, backward data-flow slicing is applied at
the chmod() and chgrp() system calls. The slices
for other tell-tale signs are produced with their
corresponding system calls in a similar way.

than 10 lines of the 317-line hangman.c program
and less than 100 lines of the 595-line 1ogin.c
program. We expect the percentage saving to be
even more for large user programs because the
portion of a program relating to our tell-tale signs
is relatively constant.

6.1 Analysis of a malicious hangman program

The game program hangman.c is very simple in
terms of slicing for any security-related properties
because it writes no files; creates no processes; and
does not access the network, change protection
states, change privilege, have input-dependent
system calls, or contain any authentication code.

hangman.c reads only one file: /usr/dict/words.

302 if ((Diet = fopen(“/usr/dict/words”, “r”)) = = 0) {

Caller

main
getword
endgame
getguess
playgame

6. Malicious code detection example

This section presents a few examples to demon-
strate the use of tell-tale signs and program slic-
ing. The first example is a user game program that
has a time bomb embedded. The second example
is a system login program. The analysis of a user
program is much easier since most slices corre-
sponding to the tell-tale signs are empty. The
analysis of the login program is more complicated
because we need to examine the authentication
logic. Appendix C contains the programs’ com-
plete source code.

In summary, the analyst needs to examine less

Callees

setup playgame
abs
prman prword prdata readch
readch
getword prword prdata prman getguess endgame

We further summarize the data used and gen-
erated by each procedure. No independent com-
putation is found-data is passed as parameters,
return values, and also as global variables.

hangman.c uses the current time as the seed for
the random number generator. The current time
is obtained at statement 301 and used by srand().
After relating the flow with the static variable
shared by the libraries srand() and rand(), we see
that the time is used by fseek(). Furthermore, we
see the value of time is compared with a constant
at line 309 and stored in the variable Count. Then
the statement 112 (i.e. a simulated time bomb) is
executed dependent on its value. So, the slice is:

308 srand(time(0) + getpid());
309 Count = (timeval> = 714332438); /* Aug 20 1992 10:45am */
179 fseek(inf, abs(rand() % Diet_size), 0);
111 if (Count) /* Triggered after Aug 20 1992 lo:45 am */
112 printf(“Time Bomb Triggered !!!\n”); /* Simulated Time-Bomb Action */

551

R. W. Lo et al./A malicious code filter

The manual detection of such a time bomb would
be difficult because of the spatial separation of the
statement comparing time (line 309) with the
time-triggered action (lines 111 and 112), and
because the name of the variable Count implies it
does nothing related to the value of time. (Of
course, someone reading hangman.c might notice
the give-away comments and string on lines 111
and 112!)

Suppose the time bomb is not embedded in this
program, then the slice for “time bomb” is:

308 srand(time(O) + getpid());
179 fseek(inf, abs(rand() % Diet_size), 0);

We see that no time-dependent computation is
made and conclude the program is safe.

6.2 Analysis of 1ogin.c
We first locate the open0 system calls, and then
use approximate backward data-flow slicing to

determine the value of the filename arguments.
login has five open0 system calls. /etc/nologin and

/etc/motd are read. /etc/utmp, /usr/adm/wtmp, and
/usr/adm/lastlog are modified. Our analysis pro-
ceeds as follows.

We find one execlp() system call; the program
executed is stored in pwd- > pw_shell.

Login has no direct network accesses.

Login uses chown() and chmod(), which in turn
use ttyn and pwd as arguments. Login uses
setuid(pwd- > pw_uid) and setgid(pwd- >

pw_gid). They depend on the variable pwd.

We slice for time-dependent computations. We
identify one time0 library call, but no statements
executed depending on the value of time. The
time records the login time of a user.

We identify whether any input values affect some
security-related system calls. We try to locate paths

leading from a read() system call to an open()
system call. No such paths are found.

The program has a very flat call structure. main0
calls doremotelogin(), getloginname(), rotterm(),
showmotd(), stypeof(), doremoteterm(), and
setenv(). doremotelogin() calls getstr().

The program has three disconnected components
by considering aggregated data flow at the proce-
dural level, as shown in the following:

l main, doremotelogin, getloginname, rotterm,
showmotd, stypeof, doremoteterm, getstr.

l timedout.

l catch.

The first one is the main body of the login pro-
gram. The other two are the signal handlers
implementing time-outs. After examining timed-

out and catch, no malicious code is found.

We use control-flow slicing to narrow the search
in the program between an access0 and an open0
system call. Then we use backward data-flow slic-
ing for the arguments in the open0 system call.
Only one access0 is found, and its argument qlog
is not used by any open0 system call. Therefore,
login does not have this race condition.

We need to slice for the authentication code, that
is to determine under what situations setuid(),
chowno, etc. are executed. To slice the authenti-
cation loop, we use control-flow slicing to focus
on the program fragment before and in the loop,
and then we slice for the conditions (i.e. slicing
for invalid) that the loop may exit. In login, the
loop exits mean that the authentication is accep-
ted. About 100 lines of C statements are collected
for analysis by the security analyst, who after care-
fully examining the code determines the program
does what it should.

552

Computers Et Security, Vol. 74, No. 6

Statements 183 to 288 are the authentication
loop-if the authentication fails, the program
obtains another userid and password and retries.
We try to determine the state variables of this
loop. A variable is a state variable if it is also an
induction variable (i.e. the current iteration
depends on some values computed in previous
iterations). The induction variables in the authen-
tication loop are pwd, utmp, lusername, argc, and
invalid. Although an authentication routine should
not have state variables, careful examination of the
loop shows that login is correct. Since the authen-
tication (password checking) should be stateless
(other than storing the userid), the authentication
can be rewritten in a way to eliminate the induc-
tion on pwd, utmp, argc, invalid. The resulting
program is much
analyze.

easier to understand and

7. Defeating MCF (stealth techniques)4

We think that a good malicious code detection
tool should disclose the ways in which it might be
compromised because a malicious code writer will
surely learn of the existence of a detection tool
and of its detection method. Once a method to
defeat a tool is found, the method can be auto-
mated to convert existing malicious code to unde-
tectable malicious code. For example, virus
scanners are found to be useless against polymor-
phic viruses. A toolkit that converts existing PC
viruses to polymorphic viruses has been developed
and exchanged among virus writers [121. Further-
more, the detection tool should also identify cases
in which its result might be unreliable.

To fool our analysis tool, a devious programmer
may use array/pointer overflow to confuse the data
flow analyzer, or use array/pointer overflow to
change the control flow of the program or to
execute data. If the devious programmer uses
array/pointer overflow to modify data flow to con-

%e name the techniques used by existing and future
malicious code to avoid detection stealth techniques, following
the naming of stealth viruses.

fuse the data flow analyzer that the program slicer
depends on, the modification is not represented in
the data-dependence graph. The devious program-
mer can use array/pointer overflow to modifjr the
return address on a stack. The execution sequence
of the program is different from what is perceived
by the analyst or our analysis tool. The malicious
program can execute data or self-modified code.
Both our tool and the analyst examine program
statements for malicious activities. The devious
programmer can hide the malicious code by
embedding them in the data storage area, and then
transferring control to the data. Examples of such
programs are given in Appendix A.

We can detect these stealth techniques by validat-
ing our assumptions about programs. These
stealth techniques fail if the analyzed program sat-
isfies the following requirements:

The program does not modify its code.

The program does not transfer control to data.

The program does not allow modification of
variables that have not been identified by the
data flow analyzer.

These requirements are further translated into
two properties: the well-formed and well-behav-
edness property. The well-formed property gov-
erns the generation of pointer values-all pointers
must point to some variables or procedures, or
have the null value, as mentioned in the program
representation. The well-behavedness property
states that there is no modification through over-
flowed arrays or pointers and no modificiation
through procedure pointers. Therefore, all data
dependence can be considered by the program
slicer. If the two properties are satisfied, the pro-
gram slice corresponds to the original program
with respect to the slicing criteria. The function of
the well-behavedness checker is to verify these
properties.

We have developed a well-behavedness checker

553

R. W. Lo et aLlA malicious code filter

that applies both flow analysis and verification
techniques to show that pointers do not overflow
and array accesses are within bounds. Details can
be found in [4]. The checker can verify most
array accesses automatically, but there are some
cases that the tool cannot handle.

8. Conclusion

Tell-tale signs are useful in discriminating mali-
cious from benign programs. Since no discrimina-
tion method is perfect, as shown by Cohen [11,
we identify a larger class of program called suspi-
cious programs. Suspicious programs are those
that carry code that rnigkt perform malicious
actions. Tell-tale signs can identify such programs.
Selecting good tell-tale signs would reduce the
cases that a program is found to be suspicious but
not malicious (i.e. false positive), and minimize
undetected malicious code (i.e. false negative). We
conjecture that it is difficult to write malicious
code that can bypass our small collection of tell-
tale signs. If such malicious code can be written,
we can easily update our library of tell-tale signs
to detect it.

The use of program slicing to determine tell-tale
properties reduces the work of the analyst when
(s)he has to examine a program. In the future,
systems (using dynamic analysis and testing tech-
niques) might be developed to examine these sli-
ces so that the detection process is more
automated.

We made several major improvements over exist-
ing and proposed malicious-code detection meth-
ods. We do not require a formal specification of
the program being analyzed. The tell-tale sign
approach is general enough to identify classes of
malicious code, whereas other approaches may
handle only one instance of malicious code at a
time. Our tool is programmable so that it can be
adapted to handle new malicious code. Most
important, previous work offering a similar level
of confidence does not exist.

The problem with our tool is that it does not
work with self-modifying programs (but can
detect them). The usefulness of our tool depends
on how the program is written; i.e. the use of
pointers, dynamic memory allocation, and recur-
sive data structures increase the size of program
slices. The correctness of its result relies on the
verification of the well-behavedness property,
which unfortunately cannot be completely
automated.

We foresee that programming languages will be
designed with more concrete semantics and
constructs that are easier to analyze. With
high-assurance software, certain programming
methodologies and styles will be followed, leading
to programs that are more sliceable and more
easily analyzed.

In terms of the development of the Malicious
Code Filter (MCF), we envision that MCF will
be operated in two modes. In the first mode,
MCF will act as a coarse filter, identifying those
programs worthy of closer examination. MCF will
analyze a program and summarize its properties to
allow the analyst to understand the possible effects
of its execution. In its second mode of operation,
MCF will support a more detailed examination of
a sliced program, perhaps one that has been iden-
tified as such by an earlier MCF run. This analysis
will investigate the exact nature of the previously
identified suspicious property, determine its trig-
gering conditions, and possibly discover additional
suspicious properties. So far, the MCF operates
only in the first mode. Techniques such as sym-
bolic evaluation [131, dynamic analysis [S, 141,
and testing [9] will be very useful in supporting
the second mode.

References

[l] F. Cohen, Computer viruses: theory and experiments,
Cornptrterr G Securiq, 6 (1987) 22-35.

[2] J.F. Schoch and J.A. Hupp, The worm programs-Early
experience with a distributed computation, Commun.
ACM, 25(3) (Mar. 1982) 172-180.

554

Computers & Security, Vol. 14, No. 6

[31

[41

[51

[61

[71

PI

[91

[lOI

R. Burger. Computer Viruses: A High-tech Disease. Abacus,

1988.

R.W. Lo, Static analysis of programs with application to

malicious code detection, PhD dissertation, Dept. of

Computer Science, University of California, Davis, Sept.

1992.

F. Cohen, A cryptographic checksum for integrity pro-

tection, Computers fi Security, (1987) 505-510.

S. Cracker and M.M. Pozzo, A proposal for a verifica-

tion-based virus filter, Proc. IEEE Cornpurer Sot. Sympo-
sium on Security and Privacy, May 1989. pp. 319-324.

R. Crawford, R. Lo, J. Crossley, G. Fink, P. Kerchen, W.

Ho, K. Levitt, R. Olsson and M. Archer, A testbed for

malicious code detection: A synthesis of static and

dynamic analysis techniques. Proc. Dept. of Energy Com-
puter Security Group Cont. May 1991. pp. 17:1-23.

R.A. Olsson, R.H. Crawford and W. Wilson Ho, Dalek:

a GNU, ‘mproved programmable debugger. USENIX

COMI Proc., Anaheim, CA, June 1990, pp. 221-231.

R. Hamlet, Testing programs to detect malicious faults.

Pror. IFIP Working ConjI Dependable Computing, Feb.

1991, pp. 162-169.

M. Weiser, Program slicing, Proc. F$h Int. Con< Software

[Ill

[Ql

[I31

1141

[I51

[I61

[I71

Engineering, March 1981, pp. 439-449.

P.M. Zislis. Semantic decomposition of computer pro-

grams: an aid to program testing, Acta Informatica (1975)
245-269.
A. Soloman, Mechanisms of stealth. ht. Computer Virus
and Security Conz. 1992, pp. 374-383.

R.S. Boyer, B. Elspas and K.N. Levitt, SELECT-A for-

mal system for testing and debugging programs by sym-

bolic execution, Proc. Int. Conf Reliable Software, 1975,
pp. 234-245.

R.A. Olsson. R.H. Crawford and W. Wilson Ho, A data-

flow approach to event-based debugging, Sofiware-Prac-
tire and Experience, 21(2) (Feb. 1991) 209-229.

E.H. Spafford, Common system vulnerabilities, Proc.
Workshop ott Future Directions in Computer Mi_wse and
Anomaly D&tion, University of California, Davis, 31

March-3 April 1992.

D. Farmer, COPS and robbers: UN*X system security,

COPS.report in romnp.sourcer.unixlooLrmeZllcops, March

1990.

R.W. Baldwin, Kuang: rule-based security checking,

lZuang.man in contp.sources.uni.x/volume2l/cops, March 1990.

APPENDIX A: Examples of bad-behaved programs

Example 1

/*
Stealth programming using pointer overflow:

The pointer p is overflowed to point the string “siruv”.
By dereferencing p, we can actually change the string “siruv” to “virus”.
The data dependence graph shows nothing about the string modification.

*/
main()

{
int i; char *p, c;
p = “nothing” + 8; /* the offset 8 is system dependent */
c = “(p+4); *(p+4) = *p; *p = c;
puts(“siruv”);

J

Example 2

/*
Stealth programming using control flow modification:

The main procedure modifies its return address by overflowing
the array x and replacing the return address in the stack with the
address of unreachable(). unreachable() is executed
when main() returns.

*/
unreachable() {

555

R. W. Lo et aLlA malicious code filter

puts(“virus”); exit();
1
main0 {

int x[l];
/* the offset of the return address from x, 2* sizeof(int),

is system dependent */
x[2] = unreachable;

>

Example 3
/*

Stealth programming using data execution:
This program executes on a Sun 3 workstation.
data[] contains a machine code program to print out the string “virus”.

Y
data[] = {

Ox4e560000, OxdffcOOOO, Ox48d7,Ox4878,Ox6487a, 0x1~4878, Oxlblff, Oxc,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1; 
main0 { 

int (*f)(); 
f = (int(*)( )) data; 

(*f)(); 
1 

APPENDIX B: Malicious code model 

Malicious code exhibits anomalous behavior, e.g. 
reading protected files, modifying protected files, 
and obtaining unauthorized privilege. Based on 
our investigation of the activities of malicious 
code, we express their anomalous activities as six 
steps in performing malicious actions. 

(1) Gain access to the system. A malicious code must 
be installed in a system before it can be activated. 
It may be installed by an insider who has the 
appropriate privilege. As a Trojan horse, it may be 
installed by casual users who obtain the malicious 
code from a public bulletin board. As a virus, it 
may attach itself to a user’s diskette when the user 
accesses an infected machine. To a lesser extent, 
an outsider who does not have direct access to the 
system can install malicious programs through 

known OS bugs or flaws [15] in protection set- 
tings (protection states). 

(2) Obtain higher privilege/Retain current privilege. 
Once a program is installed in the system, it may 
belong to a particular user in the system, but it 
may not have sufficient privilege to perform the 
malicious action. The malicious program may 
want to retain the privilege beyond the termina- 
tion of the current process, so that the malicious 
action can be performed at a later time. 

There are many ways to expand the privilege in a 
UNIX system. As mentioned in step 1, the mali- 
cious code can exploit bugs in OS and privileged 
applications, or incorrect protection settings. The 
protection settings of a UNIX system can be legit- 
imately altered directly or indirectly. With the 
direct methods, the file access mode, setuid bit, 

556 



Computers & Security, Vol. 14, No. 6 

setgid bit, the file owner id, and the group id can 
be changed by the system calls chmod, chown, 
and chgrp, respectively. The indirect method is to 
change the files or databases containing authoriza- 
tion information (e.g. letclpasswd, /etc/exports, 
/etclhosts.equiv and -user/.rhosts). 

The privilege can be expanded by exploiting the 
indirect flow of privilege in UNIX For example, 
you can gain root access if you can modify a file 
that will be run by root. By obtaining read access 
to /dev/kmem, /dev/mem, you can read the raw 
password from the memory space of the login 
process. Similarly, read accesses to the /dev/tty* 
devices can collect passwords from logins. If 
writes to /dev/mem or /dev/kmem are granted, 
you can zero the userid field in the kernel process 
table and upgrade a process to root privilege. In 
other cases, if you can modify /etc/aliases (which 
sendmail interprets), you obtain the privilege of 
sendmail. 

The direct holes may be closed by carefully exam- 
ining the protection mode of security-related 
system files. The indirect holes are harder to close 
because a thorough understanding of the inter- 
action of various components in the system is 
required. The COPS package [16] detects direct 
holes, and the Kuang [17] package identifies some 
of the indirect holes. 

(3) Wait for the proper condition or look for certain 
patterns. Malicious activity starts when certain con- 
ditions are met. For example, a PC EXE virus 
only infects FXE files in the system. Some viruses 
will not propagate most of the time, so that their 
propagation is slower and therefore less notice- 
able. A time bomb activates at a certain time (e.g. 
Friday the 13th). A logic bomb activates when 
certain combinations are detected (e.g. when the 
system load average is 12.34). Malicious programs 
that steal information search for particular key- 
words or strings in files. 

(4) Perform the action. The actions depend on the 
objectives of the malicious-code writer. Although 

many different actions are possible, their imple- 
mentations typically include file accesses, file 
modifications, and executions of other commands. 

Virus replication can be viewed as the modifica- 
tion of executable programs. The worm replica- 
tion is the remote execution of a worm segment. 
Malicious programs that steal information just 
read the relevant files and send them back to the 
writer, e.g. by electronic mail, by a network con- 
nection, or even by covert channels. Malicious 
programs aiming to get privilege usually modify 
system files; programs introducing trap-doors 
modify executable programs that have root privi- 
lege. Malicious programs requiring time-delayed 
damage need to create another process to commit 
the damage. For denial-of-services attacks, the 
malicious code may monopolize the CPU, con- 
sume a lot of memory, or even crash the system. 

(5) Clean up. To avoid detection, a malicious pro- 
grammer may remove the origins of the malicious 
code from the system. If the goal was to obtain 
some information, the programmer will not want 
to be traced from the returning information. 

Before activation, the malicious program may 
avoid obvious appearance. After activation, it erad- 
icates itself after the damage. Viruses may restore 
the original executable program. For example, the 
Internet worm avoided leaving information in the 
file system by unlinking itself More sophisticated 
malicious programs may want to reverse the audit 
information from the system. If the audit privilege 
has been obtained in step 2, it is more desirable to 
suspend the audit trail while the damage is being 
performed. 

(6) Repeat steps 1 to 5. Malicious programs, such as 
viruses and worms, may terminate when some- 
thing has been done or they may decide to wait 
for another chance. Once they propagate to other 
systems, they will start from step 1 again. 

Although conventional viruses and worms repli- 
cate blindly, target-seeking viruses and worms- 

557 



R. W. Lo et al/A malicious code filter 

which replicate in a controlled way-can be built. 
A malicious program seeking specific information 
might migrate from one system to another to 
search for the desired information; only one copy 
of the malicious program is maintained to make 
detection harder. Similar to a multistage rocket, 
the malicious codes may carry themselves to dif- 
ferent, typically more protected, environments. 
Through this method, the malicious code attacks 
highly protected systems or systems the intruder 
cannot access directly. 

To attack a system shielded from the outside by a 
network gateway, a malicious program needs to 
infect the gateway first and then jump from the 
gateway to the desired system. To infect an 

embedded system, in which the programs are 
usually stored in ROM, a malicious program 
needs to infect the development system first. 

Conclusion 

Future malicious code will be more intelligent 
than it is today. It might have artificial intelligence 
to determine which information is worthiest or to 
which system it should migrate. This kind of 
malicious program will be smart enough to avoid 
detection by dynamic analyzers and intrusion- 
detection systems. However, the complexity of 
such malicious code is high enough that certainly 
some tell-tale signs will be apparent. The sheer 
size of these malicious codes will only make static 
detection easier. 

558 



Computers Et Security, Vol. 14, No. 6 
APPENDIX C: Source code of 1ogin.c and 
hangmanx 

l0gin.c 

1r 
2 * Copyright (c) 1980 Regents of the University of California. 
3 + All rights reserved. ‘lhe Berkeley software license 

Agreement 
4 * specifies the terms and conditions for redistribution. 
5 *I 

Lfu&fliut 
g charcopyrigha= 
9 “@(#) Copyright (c) 1980 Regents of the University of 

Califurrlia.~ 
10 All rights teserved.~“; 
11 #eudi.frmtlim 
12 
13 #ifndeflim 
14 static char sccsldfl = “@(#)login.c 5.15 (Berkeley) 4/12&? 
15 #aldifncNlint 
16 
17 I’ 
18 l login[name] 
19 l login -r hostname (for rloglnd) 
20 l login -h hosmame (for telnetd. etc.) 
21 +/ 
22 
23 #include ayslparam.h> 
24 #include csys/quota.h> 
25 #in&& wys/stat.hz 
26 #include csys/time.h> 
27 #include <rys/rewmu.h> 
28 #include csys/tXeti 
29 
30 #include ugttyb 
3 1 #include <IlIJllp.h> 
32 #include. csignal~ 
33 #include <pwdb 
34 #include utdiob 
35 #inch& clastlogh7 
36 #include cermo.h> 
37 #hlcludecttyalth> 
38 flinch& csyslog.h> 
39 #include <gtpb 
40 
41 klefIneTI’YCiRPNAME “tty” 

~Mmedgmuptoownttys*/ 
42 #define lTYGID(gid) tty_gid(gid) 

Pgidthatownsallttys*/ 
43 
44 #define SCMPN(a. b) stmcmp(a. b. sizeof( 
45 #d&e SCPYN(a, b) strncpy(a. b. sizeof( 
46 
47 #define NMAX sizeof(utmp.ut_name) 
48 #define IMAX sizeof(utmp.ut_host) 
49 
50 WetIneFALSE 0 
51 #defineTRUE -1 
52 
53 char nolog[] = “/etc/nologin”; 
54 char qlog[] = “.hushlogin”; 
55 char mailu30] = “/usr/spool/ma~ 
56 char lastlog[] = “Aur/adm/lastlog”; 
57 stmct passwd nouser = (“‘I, “nope”, -1. -1. -1. ..” , Wll , .1.* , “” ); 

58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

struct sgttyb yb; 
stmct utmp utmp: 
char minusnam[l6] = “-‘I; 
char *envinit[] = ( 0 ); Pnowsctbysetawcalls*/ 
P 
* This bounds the time given to login. We initialize it hem 
l so it can be patched on machines when it’s tco small. 
*I 

int timeout=60; 

char term[641; 

struct passwd *pwd; 
char l strcat(), l tindex(), %ndaa %dlocQ %dlocQ 
int timeduut(); 
char %ynameO; 
char *cvptOt 
char *getpa@; . _^ 

76 char +stypeofo; 
77 extem char **environ * 
78 extem interms 
79 
80 struct tchars tc = ( 
81 CINIR, CQUIT, CSTART, CSIKlP, CEGT, CBRK 
82 1; 
83 struct ltchars ltc = ( 
84 CSUSP, CDSUSP, CRPRNT, CPLUSH, 

CWBRASE. CINBXT 
85 ]; 
86 
87 structwinsirewin=( 0,O.O.O); 
88 
89 int rilag; 
90 int usererr = -1; 
91 char rusemame[NMAX+l]. lusernsme[NMAx+1]; 
92 char rpassword[NMAx+l]; 
93 char name[NMAXtl]; 
94 char *rhostt 
95 
96 main(atgc. argv) 
97 char +argvn: 
98 1 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 

115 
116 
117 

mgkter chu *natn~ 
intpflag=O,hBag=O,f.f.c. 
int invnlid, quietlog; 
PILE +ulf& 
char *ayn, *ffT. 
int ldisc = 0, zero = 0, i; 
char **emmew . 

signal(SIGALRlvl, timedout); 
alarm(time-out)t 
signal(SIGQUlT, SIG_IGN)t 
signal(SIGINT, SIG_IGN); 
~piotityeRIogRocBss. 0.0); 
quota(Q_SBTUID. 4 0.0); 
r 
* pisusedbygettytote.lllogiuuotto 
destroy the envimmnent 
*-risuscdbyrlogindtocausetheautologiupmrocol; 
* -h is used by other servers to pass the neme of the. 
l rrmoteh~tmlogin~thatitmaybe~~in 

utmp and wtmp 

559 





Computers 8 Security, Vol. 74, No. 6 

249 
250 
251 
252 
253 
254 
255 
256 
257 

258 
259 
260 
261 
262 

263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 

“ROOT LOGIN REFUSED ON %s”. uy); 
invalid = TRUE; 

I 
if (invalid) ( 

printf(Togin incorrcct\n”); 
if(++tr5) { 

if (utmp.ut_host[O]) 
rYS1‘@-4=-~. 

“REPEATED LOGIN FAILURES 
ON %a FROM %.*a. %.*r”. 
Y. HMJ=. ulmP.dm 
NMAK, utmp.ut_name); 

else 
ryslog~-cRTC 

“REPRATED LOGINFAILURES 
ON %s,%.+s", 
ay, NMAX. utmp.ut_name); 

ioctl(O. TKICHFCL, (ItNU a8ttyb *) 0); 
close(O), close(l), close(2); 
aleep(lOk 
crit(lk 

I 
1 
if (*pwd->pw_shell = VI’) 

pwd->pw_shell = “/hi&h”: 
if &bdir(pwd->pw_dir) < 0 && linvalid ) ( 

if (chdirC/“) < 0) I 
printf(“No directory IV’); 
invalid = TRUE; 

IeL=( 
printf(“No directory! 96.M’. 

“Logging in with home=f’); 
pwd->pw_dir = “I”; 

I 
I 
r 
* Remote login invalid must have been because 
+ of a restriction of some sort. no extra chances. 
*I 

if (lusemrr && invalid) 
exit( 1); 

288 ) while (invalid); 
289 P committed to login turn off timeout *I 
290 alarm(O); 
291 
292 if (quota(QSETUID. pwd->pw_uid, 90) c 0 && 

amo I= EINVAL) ( 
293 if (emm = EUSRRS) 
294 ptintf(?t.~s.~“. 
295 “roe many users logged on already”, 
2% liy again IpteS); 
297 else if (ermo = EPROCLIM) 
298 printf(“Yar have too many processes running.~“); 
299 else 
300 perror(“quota (Q_s~D)"k 
301 rleep(5); 
302 exit(O); 
303 1 
304 time(&utmp.ut_ti.me); 
305 t =nysloto; 
306 if (I > 0 && (f = open(“/etc~tmp”, O_WRONLY)) >= 0) ( 
307 Iseek(f. (long)(t*siz.eof(utmp)). 0); 
308 SCPYN(utmp.ut_hne. tty); 
309 write(f, (char l )&utmp. sizeof(utmp)); 
310 close(f); 
311 ) 

312 

313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 

350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 

if ((f = open(“lusr/adm/wtmp”. 
O_WRONLYIO_APPEND)) >= 0) ( 

write(f, (char *&ump. sireof(utmp)); 
close(f); 

1 
quietlog = access(qlog. F-OK) = 0; 
if ((f = open(lastlog. O_RDWR)) 2= 0) ( 

struct lastlog 1l; 

lseek(f, (hmg)pwd->pw_uid * rizeof (atruu leatl& Ok 
ir(read(f.(chrr*)&~siuofn)=~ndtdt 

ll.R_time I= 0 && @etlog) ( 
printf(Qst logim %.‘s “* 

24-5, (char *)uime(&lLll_tbne)); 
if (*lLQhost I= lo’) 

ptilltf~fmtn %.‘&t”. 
dzeot @.R_hoaQ Umk 

else 
plintf(%n %.%ll”, 

sizd (M_linc), ll.llJinck 
I 
lseek(f, (lottg)pwd->pw_uid * bf (stmet lastlog). 0): 
time(&ll.U_time); 
SCPYN(ll.ll_line, tty); 
SCPYN(ll.ll_hoat, utrnp.ut_host); 
write(f. (char *) &IL, sizeof ll); 
close(f); 

!hown(ttyn, pwd+pw_uid. lTYCXD(Pwd+pw&i)~ 
if (Ihllag && Irnag) /+xXx*/ 

ioctl(0, TIOCSWIN5Z, &wink 
dunod(ttyn, 0620); 
setgid(pwd+pw_gid); 
sttncpy(name. utmp.ut_narne, NMAX); 
name~AXl = 1D’; 
initgroups(name, pwd->pw_gid); 
quota(QDOWARN, pwd->pw_uid, (dw_t)-I, Ok 
setuid@wd->pw_uid); 
/a destroy environmen t unless user 
has asked to preserve it *I 
if (tpgag) 

~~=emlbli~ 

r setupeuvinmmen~tbist~desttuuiat*/ 

r?ythe lznvhmnalt before saalving l / 

= * 
while (envimn[i] I= NULL) 

i++; 
envnew = (char l *) malloe(sizeof @tar l ) l (i + 1)); 
for(;i>=O;i-) 

envnew(i] = euviron[i]: 
environ = arvnew: 

setenv(“HOME=“, pwd+pw_dir, 1); 
sctcsw(“SHEL~“, pwd-*pw_sbell, 1X 
if (tenn[O] = V) 

stmcw(temr, nypeof(m/). cizado); 
samv(~=",tcml,ok 
setmv(“USER=“, pwd-rpw,narne, 1X 
suenv(“PATH=“, ” ~sr/ucbtJbin$tar/bin”, 0); 

if ((namep = rindex(pwd->pw_ahell, T)) = NULL) 
namep = pwd-+v_shelk 

else 
namep++: 

strcat(minusnam. namep); 

561 



R. W. Lo et al./A malicious code filter 

316 
377 

378 
379 
380 

if (tty[size0f(71y”)-I] == ‘d’) 
syslog(IBG_lNFO, “DIALUP %s, %s”. 

tty. pwd->pw_name); 
if (pwd->pw_uid = 0) 

if (utmp.ut_host[Ol) 
syslog(LGG_NGTICE, 
“ROOT LGGIN 6s FROM %.*s”, 

tty, HMAX. utmp.ut_host); 
else 

ay-slog(LGG_NOTICE, “ROOT LGGlN %s”, tty); 
if (l@tlcg) ( 

381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 1 
393 slgnal(SIGALRM, SIG_DFL); 
394 signal(SIGQUlT, SIG_DFL)t 
395 signal(SIGINT, SIG_DFL): 
3% signal(SIGTSTP, SIGJGN); 
397 ueclp(pwd-zpw_shelI, minusnam, 0); 
398 pumt(pwd->pw_shelI); 
399 ptintf(J’No shelbn”); 
400 exit(O); 

401 I 
4a? 

403 gctloginname(up) 
404 tegister smlct umlp *up; 

405 i 
406 register char *namep: 
407 chars 
408 
409 while (up-xt_name[O] == 10’) ( 
410 namep = up-sut_name; 
411 printf(Togin: “); 
412 while ((c = getchar I= In’) ( 
413 if@=“) 
414 c = ‘_‘; 
415 if(c=EOF) 
416 ait( 
417 if (ttamep c up->ut_namethWAX) 
418 *tWepi+=c; 
419 1 
429 1 
421 stmqsy(lusername, up->ut_name. NMAX); 
422 lttsemame[NMAX] = 0; 
423 if ((pwd = getpwnam(lusemame)) = NULL) 
424 pwd = &ncuser: 
425 I 
426 
427 timedo@ 
428 ( 
429 
430 ptintf(“L@n timed out after %d secendsW, timeout); 
431 exit(O); 
432 ) 
433 
434 int stoprnotd; 
435 catch() 
436 [ 
437 
438 signal(SIGINT. SIG_IGN); 
439 stopmotd++; 

StNCtSMSS 

ShOWTllOtdO; 
atrat(maildir, pwd-+w_name); 
if (stat(maildir. &St) = 0 a& st.st_ai?.e I= 0) 

ptiutf(“Ycu have %smail.W, 
(st.st_mtime > st.st_atime) 7 “new ” : ““); 

440 ) 
441 
442 rcottem(tty) 
443 char’tty; 

444 ( 
445 register struct ttyent *t; 

Z7” if ((t = getttynam(tty)) I= NULL) ( 
448 if (t->ty_status & -ITY_SECURE) 

449 return (1); 
450 ) 
451 return (0); 
452 ) 
453 
454 showmutd~ 
455 ( 
456 FILE+tuft 
457 registerct 
458 
459 rignal(SIGINT, catch); 
460 if ((mf = fopen(“/etc/motd”, “13) I= NULL) ( 
461 while ((c = getc(mf)) I= EOF dtdt smlnmsd = 0) 
462 put&r(c); 
463 fclose(mf); 

464 1 
465 signal(SIGINT, SIGJGN); 
4661 
467 
468 #undef UNKNOWN 
469 #define UNKNOWN “su” 
470 
471 char * 
472 stypeof(ttyid) 

char l ttyid; 473 
474 ( 
415 
476 
417 
478 
479 
480 ) 
481 

register struct ttyent +$ 

if (ttyid = NULL II (t = getttynam(ttyid)) = NULL) 
return OMKNOWN); 

return (t-xy_typek 

482 doremotelogin(host) 
483 char *host; 
484 ( 
485 getstr(ruoermune. sizeof (N- 1. “ramud?; 

486 getstr(ltntername, sizeof (became), w 
487 getstr(temt, &.e0f(term), Tetmlttal type”> 
488 if (getuido) ( 
489 pwd = &nouser. 
490 retum(-l); 
491 ) 
492 pwd = getpwnam(lusername): 
493 if (pwd = NULL) ( 
494 pwd = &nuuser; 
495 retum(-l); 
496 ) 
497 return(Nsemk(host, 

@wd->pw_uid = 0). rusemarne. lusername)); 
498 ) 
499 
500 getstr(buf, cm, err) 
501 char *but 
502 int ens 
503 char *err; 
504 ( 



505 chart; 
506 
507 do( 
508 if(tead(0, kc. 1) != 1) 
509 exit(l); 
510 if&cm CO) ( 
511 printf(“%s too longLLvl”, err); 
512 exit(l); 
513 ) 
514 *lxtf++ = c; 
515 ) while (c I= 0); 
516 ) 
517 
518 char +qeedsfl= 
519 ( “0”. “50”. “75”,“110”. “134”. “150”. Y!W. “3W. 
520 “600”, “1200”. “1800”. “2400”. “4800”. 

“9600”, “19200”. “38400” ); 
521 kletitte NSPEBDS (sizeof (speeds) / sireof (qee.ds[Ol)) 
522 
523 doranoteterm(temt, tp) 
524 char- 
525 strua sgttyb l tp; 
526 1 
527 register char +cp = index(tenn, ‘f), **cpp; 
528 char’speed; 
529 
530 if (cp) ( 
531 *cp++ = 10’; 
532 rpeed=cp; 
533 cp = index(speed, ‘/‘); 
534 if (cp) 
535 *cp++ = 10’; 
536 for (cpp = speeds; cpp < &specds[NSPBEDS]; cppt+) 
537 if (stranp(+cpp, speed) = 0) ( 
538 tp->sg_ispeed = tp->sg_ospeed = cpp-speeds; 
539 break; 
540 I 
541 ) 
542 tp-7S~@18S = ECHOlCRMODlANYPlXTABS; 
543 ) 
544 
545 r 
546 * Set the value of var to be arg in the 

Unix 4.2 BSD envimnment env. 
547 * Vu should end with *=‘. 
548 l (bindings an of the form “vat=value”) 
549 l This ~roeedttm assumes the memory for the first 

level of atviron 
550 * was allocated using malloc. 
551 *I 
552 setmv(var, value, clobber) 
553 
554 ( 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 

char %r. *value; 

extem char **environ: 
itttittdGt=9 
int varkn = strlen(var); 
int vallen = strlen(value); 

for (index = 0; mviron[indcx] f= NUU; index++) ( 
if (stmcmp(mviron[index]. var, varlm) = 0) ( 

I+ found it *I 
if (Iclobber) 

return; 
mvitcn[index] = malloc(varlen + vallen + 1); 
strcpy(environ[indcx]. var); 
strcat(environ[index]. value); 

Computers & Security, Vol. 14, No. 6 

568 
569 
570 
571 

572 
573 
574 
575 
576 
577 
578 
579 

return; 

1 
I 
environ = (char **) realloc(enviroq 

sizeof (char *) * (index + 2)) 
’ if (environ = NULL) ( 

fprintf(stdetr, “login: make out of memo*“); 
exit( 1); 

1 
environ[ittdex] = malloc(vatien + vallm + 1); 
strqy(envimn[index], var); 
sttcat(envimn[index], value> 
atviron[++ittdex] = NULL; 

struu group l getgmamO. +gc 
int gid = default_gi& 

580 ) 
581 
582 tty_gid(defattlt_gid) 
583 int default_gi& 
584 ( 
585 
586 
587 
588 
589 
590 gid = gr->gr_gid; 
591 
592 mdgrent0; 
593 
594 return &id); 
595 ) 

gr = getgmam(TIYGBPNAMB)t 
if (gr I= (struct group +) 0) 

563 



R. W. Lo et al./A malicious code filter 

ple files. We have combined them in order to run 
It through our tool. 

1 p Generic time bomb embedded in hangman.c *I 
2 
3 
4 #include urtdio.h> 
5 #indudecsys/types.h> 
6 #indudeuyrlstath> 
7 #indude<dypeh> 
8 
9 
1O#deline MINLBN6 
11 #define MAxBRFCs7 
12 t dcline BUFSIZ 1024 
13 #&fine DICT “/usr/dict/words” 
14 
15 
16 rtrua BRRJ’OS ( 
17 int y; 
18 intx; 
19 char clq 
20 1 EnqosF’l = ( 
21 ( 2.10, ‘0’ I. 
22 ( 3.10, ‘I’ I, 
23 ( 4,lO. *I’ 1, 
24 ( 5. 9. ‘I’ I. 
25 ( 3. 9.‘/’ I, 
26 (3.11.T), 
27 ( 5.11.T ] 
28 I; 
29 
30 StrucI stat 
31 ( 
32 short at_dev; 
33 shod sl_ino; 
34 short at-mode; 
35 short st_nlink; 
36 short st_uid; 
37 shod rl_gid; 
38 short rt_rdev; 
39 int a-size; 
40 int st_atime; 
41 int n_spaml; 
42 int st_mtime; 
43 inr st_m 
44 im u&me; 
4.5 int st_spare3; 
46 long rt_blksize; 
47 long st_blocks; 
48 long st_spare4[21; 
49 ) sbup. 
50 
51 int Guessed[26): 
52 
53 char Word[1024]. 
54 Known[10241. 
55 l Noose_pict[) = ( 
56 ” ” 
57 - II”, 
58 ” I”, 
59 ” I”, 
60 ” I”. 
61 ” I”. 

564 

hangmanx 

The original hangman program consists of multi- 
62 ” I “, 
63 ” I I___“, 
64 ” I I” -* 
65 0 
66 I; 
61 
68 int Errors, 
69 Wordnum = 0; 
70 
71 float Average = 0.0; 
72 
73 FILE +Diu=o; 
74 
75 int Dict_rizc; 
76 
77 int CQuns 
78 
79 main0 
80 I 
81 semp0; 
82 for (::) ( 
83 Wordnum++; 
84 playgame@ 
85 Average = (Average 

* (Wordnum - 1) + Errors) / Wordnum; 
86 1 
87 I 
88 
89 endgame 
90 f 

register char ch; 91 
92 
93 
94 
95 
96 
91 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 

prmano; 
if(Errors>=7) 

Errors=7+2; 
pmord0; 
pniata0: 
if (Errors > 7) 

printf(“Sorry, the word was 
else 

printf(“You got it!O); 

for (;;) I 
printfcAnotber word? “); 
if ((ch = read&)) = ‘II’) 

urito; 
else if (cb = ‘y’) 

bnal;; 
prinff(Vlease type ‘y’ or ‘Cl. 

1 
if (Count) 

printf(“T~e Bomb Triggered tllO)c 
113 ) 
114 
115 
116 getguerso 
117 ( 
118 registerint i; 
119 register int clx 
120 registerint m 
121 
122 printf(“Guess: “): 
123 for (;:) ( 
124 ch = readcho; 
125 if @alpha( ( 
126 if (isupper( 



Computers 8 Security, Vol. 14, No. 6 

127 ch = tolower( 
128 if (Guessed(ch - ‘a’]) 
129 printf(“Almady guessed ‘%c’O, ch); 
130 else 
131 break; 
132 ) 
133 else if (ch = 4) 
134 exito; 
135 else if (ch I= ‘0) 
136 ptimf(“Oot a valid guess: ‘%c’O,ch); 
137 I 
138 Guessed[ch - ‘a’] = 1; 
139 coneet=Q 
140 for (i = 0; Word[i] I= ’ ‘; i++) 
141 if (Word[i] = ch) ( 
142 Knowtt[i] = ch; 
143 conect=l; 
144 I 
145 if (Icofrect) 
146 Ermn++; 
147 ) 
148 
149 madcho 
150 ( 
151 int cnt,r. 
152 char ch; 
153 
154 cnt=Q 
155 for (;;) ( 
156 if (mad(0, &ch, sizeof ch) <= 0) 

157 ( 
158 if (++cnt > 100) 
159 exito; 

160 I 
161 else 
162 return ch; 
163 ) 
164 I 
165 
166 P 
167 *getword: 
168 + Get a valid word out of the Dictionary file 
169 +I 
170 @tWOdo 

171 [ 
172 FILE *inf; 
173 char *wp. *gp: 
174 intamt; 
175 
176 inf = “/usrJdict/words”; 
177 while (cant) [ 
178 amt=o; 
179 faeek(ii, abs(randG % Dict_size), 0); 
180 if (fgets(Word, 1024. inf) I- 0) 
181 if (fgets(Word, 1024. inf) I= 0) ( 
182 Word(strlen(Word) - I] = ’ ‘; 
183 if (stden(Word) > 6) 
184 for (wp = word; *WP; wp+t) 
185 if (lislower(* wp)) 
186 cont=l; 
187 I 
188 I 
189 gp=Known; 
190 wp=woKh 
191 while (*wp) ( 
192 l gp = ‘_‘; 

193 gp++; 
194 wp+t; 
195 ) 
196 * 

gp=’ (; 197 1 
198 
199 I* 
200 * abs: 
201 * Return the absolute value of an integer 
202 +/ 
203 abs(i) 
204int i; 
205 I 
206 if(i<O) 
207 return -i; 
208 else 
2O9 returni; 
210 ) 
211 
212 I’: 
213 * playgame: 
214 * play a game 
215 *I 
216 playgame 
217 ( 
218 registerint *bp; 
219 
220 getword@ 
221 Errors=Q 
222 bp = Guessed, 
223 while (bp c &Guessed[2q) ( 
224 *bp=o; 
225 bptt; 
226 I 
227 while (Enors c 7 k& index(Kttown. ‘-•) I= 0) ( 
228 PrwOrdo; 
229 Pfdata0; 
230 prmano; 
231 getguesso; 
232 1 
233 endgame@ 
234 ) 
235 
236 I* 
237 * ptdata: 

* 
;; *I 

Print out the cttrtent gtteasea 

240 prdatao 
241 ( 
242 int *bp; 
243 
244 printf(“Guessedz “); 
245 bp=Guessed; 
246 while (bp c &Guessed[26l) 
247 if (‘bp++) 
248 putchar((bp - Guessed) + ‘a’ - 1); 
249 putchar(‘0); 
250 pfintf(TVord #: %slO, Wotkttm~ 
25 1 printf(nt-f~t Average: ‘k.3m. 
252 (Average l (Won3mtttt - 1) + Emxa) I Wordttum); 
253 printf(“Gveral1 Average: %.3f0, Average); 

254 I 
255 
256 /* 
257 * pnnan: 
258 * Print out the man appropriately fortbe giva number 

565 



R. W. Lo et al./A malicious code filter 

259 * of immTect guesses. 
260 *J 
261 prmano 
262 ( 
263 in1 i; 
264 char line[9][1001; 
265 char**sp: 
266 
267 i=Q 
268 for (sp = Noosegict; l sp I= Q sp++) ( 
269 str&line[il. ‘sp); 
270 atrat(Iine[i]. ” “); 
271 ite; 
272 I 
273 
274 for (i = 0; i < Errors; i++) 
27s lhe[Err_pos[ij.y][Errqos[i].x] = Err_ps[i]& 
276 
277 for(i=O;i<9;i++) [ 
278 printf(lineti1); 
279 Pulchar(‘0); 
280 I 
281 
282 ) 
283 
284 r 
285 +prword: 
286 l Print cut the current slate of he word 
287 *I 
288 prword0 

289 ( 
290 printi(“Known: %sO, Known); 
291 ) 
292 
293 P 
294 l auup: 
295 * setupthe Strin~SCilhescIMl. 

2% *I 
297 refupo -_. 
298 ( 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 

register char **sp; 
int timev&; 

for (sp = Nooseqict: *sp 1= 0; sp++f ( 
FhWsp): 
Putchar( 

1 

timevrd = time(O); 
srand(timeval + getpid()); 
bunt = (timeval >= 714332438); 

P Aug 20.1992 lo:45 AM *I 
if ((Diet = fopen(“/usr/dic#words”. “r”)) = 0) ( 

~lYusr/dia/words”): 
; 

1 

310 
311 
312 
313 
314 
315 
316 
317 ) 

fstat(fileno(Dict), &shuf); 
Dia_size = sbuf.st_sim; 

566 


